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We introduce a method for quantifying the predictability of the event that the evolution of a deterministic dynamical system enters
a specific subset of state space at a given lead time. The main idea is to study the distribution of finite-time growth rates of errors
in initial conditions along the attractor of the system. The predictability of an event is measured by comparing error growth rates
for initial conditions leading to that event with all possible growth rates. We illustrate the method by studying the predictability of
extreme amplitudes of traveling waves in the Lorenz-96model. Our numerical experiments show that the predictability of extremes
is affected by several routes to chaos in a different way. In a scenario involving intermittency due to a periodic attractor disappearing
through a saddle-node bifurcation we find that extremes become better predictable as the intensity of the event increases. However,
in a similar intermittency scenario involving the disappearance of a 2-torus attractor we find that extremes are just as predictable as
nonextremes. Finally, we study a scenario which involves a 3-torus attractor in which case the predictability of extremes depends
nonmonotonically on the prediction lead time.

1. Introduction

Classical extreme value statistics is concerned with the
asymptotic distribution of large values in time series of
random variables. The theory, which is based on the extreme
value and generalized Pareto distributions, is well developed
for stochastic processes both with and without serial depen-
dence; see the text books [1–7]. A recent development is the
application of extreme value statistics in the setting of deter-
ministic dynamical systems. The main idea is to evaluate a
scalar observable along the evolution of a system and to study
under which conditions the same extreme value laws hold as
in the case of stochastic processes. Geophysical applications,
in which dynamical systems arise as models and observables
are physical quantities like wind speed or temperature, form
an important motivation for the development of the theory.
Very recently, Lucarini et al. [8] published the first text book
on extremes in dynamical systems which gives an excellent
overview of the latest developments and also provides an
extensive source of references.

Statistics only describe the behaviour of extremes over
long periods of time. However, for the development of early-
warning systems and riskmitigation strategies the short-term
predictability of extremes is of great importance.This leads to
the following question: how predictable are extremes? Bodai
[9] summarizes three different conclusions that can be found
in the literature:

(1) Extremes are better predictable.
(2) Extremes are less predictable.
(3) Extremes can be better or less predictable depending

on several factors.

The first conclusion is supported by the work of Hallerberg et
al. [10] who studied the predictability of extreme increments
in first-order autoregressive process, wind speed recordings,
and long-range correlated autoregressivemoving averages. In
all their examples extremes become better predictable with
increasing event size. The results in [11] showed that in i.i.d.
stochastic processes large increments are better predictable
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if the process is Gaussian, whereas large increments become
less predictable if the underlying distribution has a power law
tail. However, in the follow-up study [12], which is concerned
with threshold crossings instead of increments, it was found
again that extremes are always better predictable. The first
conclusion is also supported by the work of Franzke [13, 14]
in the context of dynamic-stochasticmodels. Bodai [9] argues
that in dynamical systems stronger predictability of extremes
may be typical but not universal. The third conclusion is
supported by the work of Sterk et al. In [15] it was pointed out
that the predictability of extreme values in dynamical systems
depends on the observable, the attractor of the system, and
the prediction lead time. In [16] it was shown how the tail of
the distribution of wind speeds affects their predictability at
high thresholds.

The predictability of extremes can be measured in dif-
ferent ways. By treating extreme events as binary events one
can measure prediction skill by means of a receiver operator
characteristic (ROC) curve which is a graph of the hit rate
against the false alarm rate [9–14]. Another possible measure
is the extreme dependency score developed by Stephenson
et al. [17], which does not tend to zero for vanishingly
rare events unlike scores such as the equitable threat score.
Alternatively, when predictions are made using a dynamical
model, predictability can be measured in terms of the growth
rate of errors in the initial condition. The earliest studies
on predictability in atmospheric models [18–20] computed
the time needed for small errors in the initial condition to
double in magnitude. This idea connects with traditional
predictability measures for dynamical systems, such as Lya-
punov exponents. The latter are asymptotic quantities that
are computed for time tending to infinity, which also implies
that they are independent of the initial condition [21]. Finite-
time Lyapunov exponents and singular values measure the
growth rate of errors over a finite time and typically they
strongly depend on the initial condition and the prediction
lead time. Measures of this type have been developed in
celestialmechanics to separate chaotic from regular dynamics
[22, 23], and they have been used to measure the growth of
errors due to model perturbations [24] and the predictability
of extremes [15].

Several papers demonstrated that finite-time error
growth rates can show large fluctuations along the attractor
of the system [25–31]. Benzi and Carnevale [32] argued
that a ratio of the average growth rate to the most probable
growth rate much smaller than 1 is an indication of enhanced
predictability, which means that some events may be better
predictable than others. A natural question is then what
kind of dynamics can lead to enhanced predictability?
For example, in dynamical systems with intermittency the
dynamics switches between two or more different dynamical
regimes and each regime can be associated with different
predictability characteristics. The work in [33, 34] shows that
in intermittent dynamical systems distributions of finite-time
Lyapunov exponents are non-Gaussian and asymmetric and
have heavy tails. Hence, in intermittent systems one can
expect that some events are better predictable than others.

The aim of this paper is to demonstrate that the pre-
dictability of extremes depends on the dynamical regime

of the model that is used for the predictions. In particular,
we show that in weakly chaotic regimes of a dynamical
system the predictability of extremes does not have universal
properties. The main idea, which is in the spirit of [32],
is to study the distribution of finite-time growth rates of
errors in initial conditions along the attractor of the system.
Comparing error growth rates of initial conditions leading
to an event with all possible growth rates then gives a
measure of the predictability of the event. We illustrate
the method using the Lorenz-96 model [35]. On the one
hand this model is simple enough for performing detailed
numerical explorations. On the other hand the model has
many dynamical features that are shared by a large class of
geophysical models.The Lorenz-96 model can be interpreted
as a model for traveling waves. The routes to chaos are
myriad and different kinds of attractors can be found [36].
The bifurcation scenarios in the Lorenz-96 model can also
be found in more complex geophysical models, such as
the atmospheric and oceanic models studied in [37, 38].
We will focus in particular on predictability in the vicinity
of bifurcations leading to intermittent and quasi-periodic
dynamics.

The remainder of this paper is structured as follows. In
Section 2 we explain how to quantify the predictability of
an event in a general dynamical system. In Section 3 we
introduce the Lorenz-96 model which we will use for our
numerical experiments. For three values of the dimension of
the model we investigate how the predictability of extreme
waves in themodel depends on intermittent or quasi-periodic
nature of the dynamics. Section 4 concludes the paper with a
summary and discussion of the results and suggestions for
further research.

2. Predictability of Dynamical Systems

This section explains the methodology of quantifying the
predictability of an event in a dynamical system. In general,
a deterministic dynamical system can be defined as a triple
(𝑀, 𝑇,Φ) which consists of a state space 𝑀, a time set 𝑇,
and an evolution operator Φ : 𝑇 × 𝑀 → 𝑀, such that the
following properties are satisfied:

(i) 𝑇 ⊂ R is an additive half group: 0 ∈ 𝑇 and for all
𝑡, 𝑠 ∈ 𝑇 also 𝑡 + 𝑠 ∈ 𝑇.

(ii) For all 𝑥 ∈ 𝑀 and 𝑡, 𝑠 ∈ 𝑇 we have

Φ (𝑥, 0) = 𝑥,

Φ (Φ (𝑥, 𝑡) , 𝑠) = Φ (𝑥, 𝑡 + 𝑠) .
(1)

We also write Φ𝑡(𝑥) = Φ(𝑥, 𝑡). Particular examples that are
included in this setting are discrete time systems, such as
iterated maps, and continuous-time systems, such as flows of
differential equations; see [39, 40]. In this paper we assume
that the state space is a subset of the Euclidean space, butmore
generally 𝑀 can be a Riemannian manifold or a function
space.

The predictability of a dynamical system is often quan-
tified in terms of the growth rate of errors in the initial
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condition. Suppose that the initial condition 𝑥0 ∈ 𝑀 is
perturbed in the direction of V; then ‖Φ𝜏(𝑥0+𝜖V)−Φ𝜏(𝑥0)‖/𝜖
is the error growth rate over a time interval of length 𝜏. Harle
et al. [28] studied the statistics of these growth rates and
their dependence on the parameters 𝜖 and 𝜏 in the setting of
2-dimensional dissipative and conservative maps. The error
growth was found to increase exponentially fast with 𝜏 when
𝜏 is small. For larger values of 𝜏 the error growth follows a
power law which depends on the magnitude of 𝜖. In their
paper it is suggested that these results are quite general.

In this paper we will make the idealized assumption that
the initial perturbation size 𝜖 is infinitesimally small. Under
this assumption the error at time 𝜏 is then given by

lim
𝜖→0

Φ𝜏 (𝑥0 + 𝜖V) − Φ𝜏 (𝑥0)
𝜖

= 𝐷Φ𝜏 (𝑥0) V, (2)

where the derivative is taken with respect to the initial
condition 𝑥0 in the direction of the vector V. The worst-
case error growth over a time interval of length 𝜏 can be
computed by maximizing the following Rayleigh quotient
over all nonzero vectors V:

𝐷Φ𝜏 (𝑥0) V

2

‖V‖2
=
V⊤𝐷Φ𝜏 (𝑥0)

⊤𝐷Φ𝜏 (𝑥0) V
V⊤V

, (3)

where ‖ ⋅ ‖ denotes the Euclidean norm. A standard result in
linear algebra [41] implies that the quotient (3) attains a max-
imum if and only if V is the eigenvector of𝐷Φ𝜏(𝑥0)

⊤𝐷Φ𝜏(𝑥0)
corresponding to the largest eigenvalue. Equivalently, the
maximum is attained precisely when V is the right singu-
lar vector corresponding to the largest singular value of
𝐷Φ𝜏(𝑥0), which throughout this paper will be denoted by
𝜎(𝑥0, 𝜏). In this way we obtain a measure of finite-time
predictability for a given initial condition 𝑥0 ∈ 𝑀.

In many applications it is often important to quantify the
predictability of a certain event taking place in the future.
We define an event to be a subset 𝐸 of the state space 𝑀.
For a given initial condition 𝑥0 ∈ 𝑀 we say that the event
𝐸 occurs at time 𝜏 if Φ𝜏(𝑥0) ∈ 𝐸, or, equivalently, 𝑥0 ∈
Φ−1𝜏 (𝐸). The predictability of the event 𝐸 can be quantified
as follows. Assume that the dynamical system (𝑀, 𝑇,Φ) is
equipped with an invariant probability measure 𝜇 supported
on some attractor 𝐴 ⊂ 𝑀 (in which case we also assume that
𝐸 ⊂ 𝐴). This means that 𝜇(𝐴) = 1 and 𝜇(Φ−1𝑡 (𝑆)) = 𝜇(𝑆) for
all measurable subsets 𝑆 ⊂ 𝐴. Then the distribution function
of the time-𝜏 singular values is given by

P𝜏 (𝜎 ≤ 𝑠) = 𝜇 ({𝑥 ∈ 𝐴 | 𝜎 (𝑥, 𝜏) ≤ 𝑠}) . (4)

The conditional distribution of time-𝜏 singular values given
that the event 𝐸 occurs at time 𝜏 reads as

P𝜏 (𝜎 ≤ 𝑠 | 𝐸) =
𝜇 ({𝑥 ∈ 𝐴 | 𝜎 (𝑥, 𝜏) ≤ 𝑠} ∩ Φ−1𝜏 (𝐸))

𝜇 (𝐸)
, (5)

where we have used that 𝜇 is an invariant measure so that
𝜇(Φ−1𝜏 (𝐸)) = 𝜇(𝐸). The predictability of the event 𝐸 can be
quantified by comparing both distributions. For example, if
the right endpoint of P𝜏(𝜎 ≤ 𝑠 | 𝐸) is much smaller than the

right end point of P𝜏(𝜎 ≤ 𝑠), then the event 𝐸 can be called
predictable. In the limit 𝜏 → ∞ all events become equally
predictable.

The advantage of the approach outlined in this section is
the fact that it combines measures of predictability and the
statistical recurrence properties of the system via its invariant
measure. For simple dynamical systems for which the growth
of errors can be computed analytically and for which the
invariant measure is known the distributions (4) and (5) can
be computed analytically. Hence, our approach may be used
to derive general statements on the predictability of extremes
for simple classes of dynamical systems in a rigorousway.This
idea will be pursued in forthcoming work. Also note that the
methodology applies to arbitrary events. This in particular
includes the case of rare events, but these need not be extreme
events in which some observable exceeds a threshold.

3. Results

3.1. The Lorenz-96 Model. In [35] Lorenz introduced a one-
dimensional atmospheric model to study fundamental issues
regarding the predictability of the atmosphere and weather
forecasting. The model can be interpreted as a model for
atmospheric waves traveling along a circle of constant lati-
tude. We divide the latitude circle into 𝑛 equal sectors and
define for the 𝑖-th sector a distinct variable 𝑥𝑖. The variables
𝑥1, . . . , 𝑥𝑛 can be interpreted as meteorological quantities,
such as pressure or vorticity, where the index 𝑖 of each variable
𝑥𝑖 plays the role of longitude. The dynamical equations are

𝑑𝑥𝑖
𝑑𝑡

= 𝑥𝑖−1 (𝑥𝑖+1 − 𝑥𝑖−2) − 𝑥𝑖 + 𝐹, 𝑖 = 1, . . . , 𝑛 > 3, (6)

with the periodic “boundary condition” 𝑥𝑖+𝑛 = 𝑥𝑖. The
dimension 𝑛 ∈ N and forcing 𝐹 ∈ R are free parameters.
The Lorenz-96 model is often used to test data assimilation
methods [42, 43] and subgrid scale parameterizations [44],
for studies in statistical mechanics [45, 46], and in the general
study of spatiotemporal chaos [47]. In this paper we use the
Lorenz-96model to study the predictability of extreme events
in the vicinity of bifurcations.

The point 𝑥𝐹 = (𝐹, . . . , 𝐹) is clearly an equilibrium
solution of (6) for all 𝑛 ∈ N and all 𝐹 ∈ R. For all 𝑛 ≥ 4 this
equilibrium becomes unstable through either a supercritical
Hopf or a double-Hopf bifurcation for 8/9 < 𝐹 < 3/2 [36].
In both cases a stable periodic attractor is born which has the
physical interpretation of a traveling wave. Figure 1 shows the
spatiotemporal properties of these waves: the period and the
spatial wave number are plotted as a function of 𝑛. In [36] it
was proved analytically that the period tends to a finite limit
as 𝑛 → ∞, but the wave number increases monotonically
with 𝑛.

The periodic attractor representing the travelingwave can
undergo several subsequent bifurcations, such as period dou-
bling bifurcations or Nĕımark-Sacker bifurcations. Further
bifurcations lead to strange attractors via amultitude of routes
to chaos which depend on the dimension 𝑛 [36]. Hence,
the Lorenz-96 exhibits successive bifurcations of traveling
waves. The spatiotemporal properties of the resulting waves
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Figure 1: The period and spatial wave number of the traveling wave born at the first Hopf bifurcation of the Lorenz-96 model as a function
of the dimension 𝑛. Note that the period tends to a finite number as 𝑛 → ∞, but the wave number is monotonically increasing.
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Figure 2: Hovmöller diagrams of two attractors in the Lorenz-96 model for 𝑛 = 7 and 𝐹 = 2 (a) and 𝐹 = 4.4 (b). The value of 𝑥𝑗(𝑡) is plotted
as a function of 𝑡 and 𝑗. For visualization purposes linear interpolation between 𝑥𝑗 and 𝑥𝑗+1 has been applied in order to make the diagram
continuous in the variable 𝑗.

are “inherited” from the periodic attractor that was born at
the Hopf bifurcation. For an example, see Figure 2 for two
traveling waves in dimension 𝑛 = 7. A very similar scenario
was found in a Galerkin projection of a shallow water model
that was used to study the dynamical mechanisms behind
atmospheric low-frequency variability [38].

The particular interest of this paper is the predictability
of so-called extreme events in which an observable evaluated
along an evolution of the system exceeds a threshold. Con-
crete examples are models for weather and climate in which
extremes of physical quantities such as wind speed are of

great importance [15, 16, 48]. For the Lorenz-96model wewill
study the predictability of events of the form

𝐸𝑢 = {𝑥 ∈ R
𝑛 : 𝑥1 > 𝑢} . (7)

Hence, if 𝑥(0) is an initial condition, then 𝑥(𝜏) ∈ 𝐸𝑢 is the
event that the amplitude of the traveling wave measured at
the first “grid point” exceeds the threshold 𝑢 at time 𝜏. For
these events the distributions (4) and (5) not only depend on
the prediction lead time 𝜏, but also on the event threshold 𝑢.
In this paper we will study how this dependence is influenced
by (nearby) bifurcations of the system. Note that due to the
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Figure 3: Bifurcation diagrams of attractors in the Lorenz-96model for 𝑛 = 4.The three largest Lyapunov exponents are plotted as a function
of the parameter 𝐹. At 𝐹 ≈ 11.8382 a periodic attractor disappears through a saddle-node bifurcation and a chaotic attractor is detected (see
the magnification in (b)).

circulant symmetry of the Lorenz-96 model (6) the results
obtained for the event 𝐸𝑢 defined in (7) will not change if the
inequality 𝑥1 > 𝑢 is replaced by 𝑥𝑖 > 𝑢 for any other value of
𝑖 = 2, . . . , 𝑛.

For simple dynamical systems for which the invariant
measure is known the distributions (4) and (5) can be
computed analytically. However, for the Lorenz-96 model
they have to be approximated by their empirical counterparts
obtained from numerical simulations. In order to provide
a good sampling of the attractor of the Lorenz-96 system
as far as both local and global fluctuations are concerned
we computed the distributions by means of an orbit on the
attractor consisting of 105 points with a time step of 0.1.
The starting point of the orbit is obtained by a transient
integration of 500 time units using a random initial condition.

3.2. Intermittent Periodicity for 𝑛 = 4. Figure 3 shows the
bifurcation diagram of the Lorenz-96 model for 𝑛 = 4.
The equilibrium 𝑥𝐹 = (𝐹, 𝐹, 𝐹, 𝐹) becomes unstable at 𝐹 =
1 through a supercritical Hopf bifurcation. The periodic
attractor remains stable until 𝐹 ≈ 5.06 where it exchanges
stability with another periodic attractor. However, at 𝐹 ≈
8.93 the original periodic attractor gains stability again.
Finally, at 𝐹SN ≈ 11.8382, it disappears through a saddle-
node bifurcation and a chaotic attractor is detected. Figure 4
shows the periodic attractor and the chaotic attractor just
before and after the saddle-node bifurcation. The dynamics
on the chaotic attractor consists of alternations between
nearly periodic and chaotic behaviour. This is the classical
type 1 intermittency scenario described by Pomeau and
Manneville [49]. Note that, for intermittency to occur, it

is not only necessary to have an attractor that disappears
through a bifurcation, but also there has to be a global
dynamical mechanism that enables recurrent visits to the
location of the formerly existing attractor in state space. In
the case of the Lorenz-96 system we have identified a nearby
heteroclinic cycle between four equilibria that can provide
such a mechanism; see [36] for further details.

Figure 5 shows the mean and the left and right endpoints
of the distribution (4) for 𝜏 = 1 as a function of the
parameter 𝐹. Clearly, the variability of the singular values
along the attractor increases very sharply after the saddle-
node bifurcation. Note that the largest Lyapunov exponent
in the bifurcation diagram of Figure 3 shows a more gradual
increase of square root order except for the presence of
narrow windows with periodic dynamics. For 𝐹 > 11.8382,
which belongs to the chaotic regime after the periodic
attractor has disappeared, the right endpoint of (4) shows
large fluctuations: peaks can differ in magnitude by a factor
of 10 or larger. The left endpoint suddenly decreases after the
saddle-node bifurcation, which means that the predictability
of some events can potentially be enhanced. In particular, this
leads to the question whether the predictability of extremes
can be enhanced.

Figure 6 shows graphical representations of the distribu-
tions (4) (in black) and (5) (in color) in the form of box plots
for the prediction lead times 𝜏 = 0.5, . . . , 5. The support of
the unconditional probability distribution (4) becomes larger
as the lead time 𝜏 increases. More specifically, consider the
right endpoint 𝜎∞ of the distribution which is defined as the
largest singular value of the sample andwhich is ameasure for
worst-case predictability. A least squares fit computed over
the lead times 𝜏 = 0.25, 0.5, . . . , 1.5 (not all shown in Figure 6)
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Figure 4: Periodic attractor of the Lorenz-96 model for 𝑛 = 4 and 𝐹 = 11.83 (a) and a chaotic attractor for 𝐹 = 11.85 that appears after the
periodic attractor disappears through a saddle-node bifurcation (b).
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Figure 5: The left endpoint, mean, and right endpoint of the
distribution (4) plotted as a function of the parameter 𝐹 for 𝑛 = 4
and predictability lead time 𝜏 = 1. The grid on the horizontal axis
consists of 200 points; for each value of 𝐹 the distribution (4) is
approximated by computing singular values along an orbit of 103
points.

gives 𝜎∞ = 𝑂(𝑒6.61𝜏) which shows that up to 𝜏 = 1.5 the
right end point𝜎∞ increases exponentially with the lead time.
For larger lead times, however, 𝜎∞ tends to a constant. The
exponential growth of 𝜎∞ for short lead times has been found
earlier in the low-dimensional systems used in the study by
Harle et al. [28] who also point out that for finite-size initial
errors a power law behaviour will be observed.

Figure 6 also shows that the right endpoint of the con-
ditional distribution (5) grows substantially slower than that
of the unconditional distribution (4) for lead times 𝜏 > 0.5.
Figure 7 shows how the conditional distributions change as
a function of the threshold 𝑢 for fixed lead times. For 𝜏 =
0.2 the interquartile range shifts towards the left endpoint,
whereas the right end point is nearly constant. However, for
𝜏 = 1.2 the right endpoint decreases exponentially fast with
the threshold quantile 𝑞: a linear fit gives that𝜎∞ = 𝑂(𝑒−26.1𝑞).
The main conclusion drawn from these observations is that
for 𝜏 ≤ 1.5 the worst-case error growth, as represented by the
right endpoint of the distribution (4), increases exponentially
with the prediction lead time 𝜏, but errors for extreme events
grow at amuch slower rate. For 𝜏 > 1.5 the right endpoint 𝜎∞
of (4) remains nearly constant, but also in this case the right
endpoint for the conditional distribution (5) remains several
orders of magnitude smaller.

Figure 8 shows a time series of the Lorenz-96 model.
Note that 𝑥1(𝑡 + 𝜏) is plotted as a function of 𝑡 with
𝜏 = 1.2 rather than 𝑥1(𝑡) itself. By plotting 𝜎(𝑥(𝑡), 𝜏) in
the same figure we can study whether initial conditions
leading to extremes typically have small or large error growth
rates and whether this is related to particular features of
the dynamics. The time series clearly shows alternations of
periodic and aperiodic dynamics, which is characteristic for
type 1 intermittency.During intervals with periodic dynamics
the singular values have a magnitude of 𝑂(10). However,
during interruptions of periodicity (which in Figure 8 are
visible near 𝑡 = 275 and 𝑡 = 315) the singular values
show very large spikes with typical magnitudes of𝑂(102) and
𝑂(103). This explains why the box plots in Figure 6 exhibit
long tails. Note that in [33, 34] exponential tails have also been
found for finite-time Lyapunov exponents near intermittent
dynamics of the logisticmap. Also note that in the intervals of
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Figure 6: Box plots of distributions of singular values plotted as a function of the prediction lead time 𝜏 for 𝑛 = 4 and 𝐹 = 11.85. The black
box plots represent the unconditional distribution (4).The colored box plots represent the conditional distribution (5) for the event 𝐸𝑢 where
the threshold 𝑢 is chosen as the 95th, 97th, or 99th percentile. (b) shows initial conditions (red points) on the attractor for which the event
𝐸𝑢 takes place at time 𝜏 = 1, 2, 3 where 𝑢 is the 99th percentile.
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Figure 7: Box plots of the conditional distribution of singular values (5) for the event 𝐸𝑢 as a function of the threshold quantile for 𝑛 = 4 and
𝐹 = 11.85. (a) 𝜏 = 0.2. (b) 𝜏 = 1.2.
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Figure 8: Time series of the Lorenz-96 model for 𝑛 = 4 and 𝐹 = 11.85 in which 𝑥1(𝑡 + 𝜏) is plotted together with 𝜎(𝑡, 𝜏) for 𝜏 = 1.2. The plot
illustrates that initial conditions leading to the event 𝐸𝑢 at time 𝜏 have systematically a low error growth rate 𝜎.

Table 1: The exponential growth of the right endpoint of (4) with lead time for 𝑛 = 4 and different parameter values of the parameter 𝐹.

𝐹 11.85 11.90 11.95 12.00 12.05 12.10 12.15
𝜎∞ 𝑂(𝑒6.61𝜏) 𝑂(𝑒6.31𝜏) 𝑂(𝑒6.28𝜏) 𝑂(𝑒6.71𝜏) 𝑂(𝑒6.47𝜏) 𝑂(𝑒2.55𝜏) 𝑂(𝑒6.48𝜏)

aperiodic behaviour 𝑥1 does not reach extreme values. These
observations explainwhy in Figure 7 the right endpoint of the
distribution decreases with the event threshold.

The computations by Pomeau and Manneville [49] sug-
gest that in the type 1 intermittency scenario the maximal
Lyapunov exponent grows like 𝑂(√𝐹 − 𝐹SN) where 𝐹SN ≈
11.8382 is the parameter value of the saddle-node bifurcation.
Such behaviour is indeed visible in Figure 3 with the excep-
tion of the presence of narrowwindowswith periodic dynam-
ics. This suggests that further away from the bifurcation the
system becomesmore chaotic. A natural question then is how
will the predictability of extremes behave further away from
the saddle-node bifurcation? Table 1 shows the exponential
growth of 𝜎∞ for 0 < 𝜏 ≤ 1.5 for different parameter values
𝐹. In each case a least squares fit computed over the lead
times 𝜏 = 0.25, 0.5, . . . , 1.5 has been used. The behaviour is
rather stable with 𝐹 with the exception of 𝐹 = 12.1 in which
case a stable periodic attractor appears amidst the chaotic
regime. Figure 9 shows a similar diagram as in Figure 6 but
for the parameter value 𝐹 = 12.15 which is further away
from the saddle-node bifurcation. These results suggest that
the predictability of the event𝐸𝑢 is rather stable across a broad
range of parameter values for 𝐹, except for periodic windows
within the chaotic regime.

3.3. Intermittent Quasi-Periodicity for 𝑛 = 7. Figure 10 shows
the bifurcation diagram of the Lorenz-96 model for dimen-
sion 𝑛 = 7.The equilibrium𝑥𝐹 = (𝐹, . . . , 𝐹) becomes unstable
at 𝐹 ≈ 1.182 through a supercritical Hopf bifurcation. The
periodic attractor remains stable until 𝐹 ≈ 2.717 where it
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Figure 9: As Figure 6, but for the parameter value 𝐹 = 12.15 which
is further away from the saddle-node bifurcation.

bifurcates through a Nĕımark-Sacker bifurcation. The result-
ing 2-torus attractor remains stable until 𝐹 ≈ 4.272 where it
disappears through a quasi-periodic saddle-node bifurcation
[40, 50]. Figure 11 shows a Poincaré section of the quasi-
periodic attractor before the bifurcation and the chaotic
attractor just after the bifurcation. The trace of the formerly
existing 2-torus attractor is clearly visible. The dynamics
is characterized by alternations between quasi-periodic and
chaotic dynamics. This is a form of intermittency but of
a different nature than type 2 intermittency described by
Pomeau andManneville [49] since the latter scenario involves
the disappearance of a stable periodic orbit instead of a 2-
torus attractor.
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Figure 10: As Figure 3, but for dimension 𝑛 = 7. In this case a 2-torus attractor disappears through a quasi-periodic saddle-node bifurcation
which leads to a chaotic attractor.
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Figure 11: A quasi-periodic attractor of the Lorenz-96 model for 𝑛 = 7 and 𝐹 = 4.0 (a) and a chaotic attractor for 𝐹 = 4.4 (b) plotted in the
Poincaré section 𝑥1 = 2.5.

In this case the box plots in Figure 12 indicate that pre-
dictability of the event𝐸𝑢 does not increasewith the threshold
𝑢. The right end points of both distributions (4) and (5) grow
approximately like 𝜎∞ = 𝑂(𝑒1.60𝜏) as a function of 𝜏. Also
note that the interquartile range of (5) shifts towards larger

values as 𝑢 increases. Table 2 shows that further away from
the quasi-periodic saddle-node bifurcation (i.e., for larger 𝐹)
the right endpoint 𝜎∞ of both the distributions (4) and (5)
grows faster with 𝜏. For the parameter values in Table 2 the
corresponding box plots are qualitatively similar to Figure 12
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Figure 12: As Figure 6, but for 𝑛 = 7 and 𝐹 = 4.4.
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Figure 13: As Figure 8, but for 𝑛 = 7, 𝐹 = 4.4, and 𝜏 = 1. The plot illustrates that initial conditions leading to the event 𝐸𝑢 at time 𝜏 can have
both large and small error growth rates 𝜎.

and therefore they are not shown. These observations imply
that initial conditions that lead to the extreme event 𝐸𝑢 are
typically associated with large error growth rates.

The question is how can the unpredictability of extremes
be explained in terms of the intermittent dynamics? Figure 13
shows a time series in which 𝑥1(𝑡 + 𝜏) and 𝜎(𝑥(𝑡), 𝜏) are
plotted as a function of 𝑡 for 𝜏 = 1 fixed. The time
series clearly shows an episode of quasi-periodic dynamics

which is interrupted for 𝑡 ∈ [180, 210]. During intervals of
quasi-periodic dynamics the singular values havemagnitudes
ranging between 2 and 5. The 2-torus attractor at 𝐹 = 4
has singular values in the same range. During intervals of
chaotic dynamics the singular values are typicallymuch larger
and have a magnitude ranging between 2 and 12. Also note
that 𝑥1(𝑡) attains extreme values in both the quasi-periodic
and the chaotic regime. These observations explain why
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Table 2: The exponential growth of the right endpoint of (4) with lead time for 𝑛 = 7 and different parameter values of the parameter 𝐹.

𝐹 4.4 4.5 4.6 4.7 4.8 4.9 5.0
𝜎∞ 𝑂(𝑒1.60𝜏) 𝑂(𝑒1.72𝜏) 𝑂(𝑒1.82𝜏) 𝑂(𝑒1.90𝜏) 𝑂(𝑒2.01𝜏) 𝑂(𝑒2.00𝜏) 𝑂(𝑒2.14𝜏)
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Figure 14: As Figure 3, but for dimension 𝑛 = 24. A periodic
attractor bifurcates into a 2-torus attractor at 𝐹 ≈ 3.639 which in
turn bifurcates into a 3-torus attractor at 𝐹 ≈ 3.791. At 𝐹 ≈ 3.831 a
chaotic attractor is detected.

extremes do not become better predictable with increasing
threshold.

3.4. Quasi-Periodicity for 𝑛 = 24. Figure 14 shows the bifur-
cation diagramof the Lorenz-96model for dimension 𝑛 = 24.
The equilibrium 𝑥𝐹 = (𝐹, . . . , 𝐹) becomes unstable at 𝐹 ≈
0.889 through a supercritical Hopf bifurcation. The periodic
attractor remains stable until 𝐹 ≈ 3.639 where it bifurcates
through a Nĕımark-Sacker bifurcation. The resulting 2-torus
attractor remains stable until 𝐹 ≈ 3.791 and a 3-torus
attractor appears. Figure 14 suggests that the 3-torus attractor
persists in a small interval of the parameter 𝐹 before it
disappears at𝐹 ≈ 3.831 and a chaotic attractor is detected. It is
unknown which bifurcation is involved in the disappearance
of the 2-torus attractor; addressing this question is left for
future work. The chaotic attractor persists until 𝐹 ≈ 3.864
after which a 2-torus attractor is observed again.

The box plots in Figure 15 for 𝐹 = 3.85 show that,
unlike in the cases 𝑛 = 4 and 𝑛 = 7, the singular values
do not grow exponentially with the lead time 𝜏. For 𝐹 =
3.84, 3.845, 3.855, 3.86 the box plots are qualitatively similar
(not shown). Errors for 𝜏 = 0.6 are typically larger than for
𝜏 = 1.2. The oscillatory behaviour weakens with increasing
𝜏. This nonmonotonic behaviour of predictability is at odds
with the results in [28] in which exponential or power law

growth is conjectured to be typical for chaotic systems.
However, nonmonotonic dependence of predictability on
lead time has also been observed in wind speed predictions
produced by an operational weather forecasting system [16,
Figure 4].We expect that inmore general systems with strong
quasi-periodicity, for instance, related to diurnal or seasonal
cycles, error growth rates will not follow an exponential or
power law.

4. Conclusion and Discussion

In this paper we quantified the predictability of a specific
event in a dynamical system by comparing the growth rates of
errors in initial conditions that lead to this event with growth
rates for all initial conditions. Numerical experiments with
the Lorenz-96 model show that the predictability of large
amplitudes of traveling waves is influenced by the dynamical
regime of the model. In particular, we have focused on
intermittency scenarios in which episodes of regular and
chaotic dynamics alternate. We have shown that predictabil-
ity of extremes increases near a saddle-node bifurcation of a
periodic orbit but decreases near a saddle-node bifurcation of
a 2-torus attractor. Finally, near the breakdown of a 3-torus
attractor we have observed a nonmonotonic dependence of
predictability on lead time. The results in this paper show
that the predictability of extremes in dynamical systems is
not universal and warrant a further in-depth investigation to
unravel generic dynamicalmechanisms that lead to enhanced
predictability of extremes.

We have studied the predictability in the model-driven
framework (borrowing the terminology of [9]). The advan-
tage of the approach outlined in this work is that distributions
of error growth rates are computed in terms of the invariant
measure of the system. In this way distributions of error
growth rates for vanishingly rare events can be studied. For
simple classes of dynamical systems the methodology can
be used to derive rigorous results on predictability and this
direction will be pursued in future work. A limitation of
our method, however, is the explicit need of a dynamical
system and its variational equations (also referred to as a
tangent linear model). The latter problem may be remedied
by replacing the singular values which maximize (3) by the
quotients in (2) using a small, but finite, value of 𝜖. Harle et
al. [28] pointed out that for sufficiently small 𝜖 the growth
rates of infinitesimal and finite-size errors behave similarly
with prediction lead time.

Our work is written in the spirit of dynamical systems
theory, and we have used a measure of predictability which
fits into that framework. However, instead of using finite-
time growth rates to measure predictability one could also
use skill scores or receiver operator characteristic (ROC)
curves. Such measures have the advantage that they can
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Figure 15: As Figure 6, but for 𝑛 = 24 and 𝐹 = 3.85.

also be used in the framework of data-driven predictions
in cases where a dynamical model is not available. The
numerical experiments performed with the Lorenz-84model
by Bodai [9] suggest that finite-time Lyapunov exponents do
not directly correspond to ROC-based measures. This would
imply that assessment of predictability also depends onwhich
measure is being used. An interesting question for further
research is how can the results of different studies using
different predictability measures be reconciled and under
which circumstances do different measures for predictability
lead to opposite conclusions?

We conclude this paper by remarking that the phe-
nomenon of enhanced predictability of extreme events is
not limited to toy models, but it also occurs in real-world
applications. Recent work [16], based on output of the
operational ensemble prediction systemof theUKMetOffice,
has revealed that wind speed extremes are in general less
predictable than nonextremes, but under certain conditions
which are related to the distribution of the ensemblemembers
they are better predictable. In addition, observational work
shows that large-scale flow patterns, such as the North
Atlantic Oscillation, cause temporal clustering of storms [51,
52]. Hence, we foresee that the predictability of extremes will
remain an active topic of research in the near future.
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